Thursday 16 February 2012

Stretching electrical conductance to the limit

Individual molecules have been used to create electrical components like resistors, transistors and diodes that mimic the properties of familiar semiconductors. But according to Nongjian (NJ) Tao, a researcher at the Biodesign Institute at ASU, unique properties inherent in single molecules also may allow clever designers to produce novel devices whose behavior falls outside the performance observed in conventional electronics.
In research appearing in today’s issue of Nature Nanotechnology, Tao describes a method for mechanically controlling the geometry of a single molecule, situated in a junction between a pair of gold electrodes that form a simple circuit. The manipulations produced over tenfold increase in conductivity.
The unusual, often non-intuitive characteristics of single molecules may eventually be introduced into a broad range of microelectronics, suitable for applications including biological and chemical sensing electronic and mechanical devices.

No comments:

Post a Comment